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the BOD of an aerated lagoon at a pulp and paper mill
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Abstract

Accurate well-timed measurement of quality variables is essential to the successful monitoring and controlling of wastewater treatment
systems. Because the measurements of these variables are difficult and often involve large time delays, predictive models for target quality
variables have been widely considered. However, many microbial reactions and their interactions with the environment result in time
dependent processes, making the development of bioprocess models difficult and time-consuming. In this paper, steady-state and dynamic
predictive models based on multiple linear regression (MLR) and partial least squares (PLS) regression are presented. Water quality
measurements and process information are used to develop models to predict biochemical oxygen demand (BOD) at the inlet and outlet
of an aerated lagoon of a pulp and paper mill operated by International Paper of Brazil (IPB). The results show that linear steady-state
and dynamic models are able to predict inlet and outlet BOD even for a complex process that has operational data limitations (imprecise
measurements, a large number of missing values, etc.). A companion paper [Chem. Eng. J., submitted for publication] reports static and
dynamic nonlinear models that were developed from the same 4 years of data using a neural network approach. Together, the two papers
provide a well-documented application of linear and nonlinear empirical modeling techniques to an industrial case study. The modeling
techniques are also valid for other types of industrial applications.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Biochemical oxygen demand; PLS modeling; Linear multivariate regression techniques; Aerobic process; Bioprocess monitoring; Wastewater
treatment

1. Introduction

Environmental concerns, manifested in changing market
demands and more stringent environmental regulations,
are among the most important incentives for technological
change in the pulp and paper industry. As environmental
restrictions tighten, many industrial wastewater treatment
plant operators are being required to comply at levels that
seriously challenge the capabilities of their plants.

In aerobic treatment systems, aerobic bacteria use oxygen
to degrade organic compounds. For the system to function
properly, many variables must be controlled. Dissolved oxy-
gen levels (biochemical oxygen demand (BOD) and chemi-
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cal oxygen demand (COD)), pH and nutrient levels (ammo-
nia and phosphorus) are among the most critical. Although
wastewater quality parameters can be measured by labora-
tory analyses, a significant time delay in the range of min-
utes to a few days is usually unavoidable. This lack of suit-
able process variable information in a timely manner limits
the effective control of effluent quality[2,3].

To overcome these problems, deterministic and empirical
models have been developed to estimate hard-to-measure
process variables. Not surprisingly, the modeling tradition-
ally used for bioprocesses, based on mass balance equations
together with rate equations for microbial growth, substra-
tum consumption and formation of products, has been shown
to be inefficient for describing these mechanisms in wastew-
ater treatment processes[3–6]. Therefore, in these cases
when models based on first principles are not available, or
requires excessive computation time, empirical models be-
come attractive alternatives[7]. Linear empirical models are
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Nomenclature

BODin inlet wastewater BOD (mg/L)
BODout outlet wastewater BOD (mg/L)
COD inlet wastewater COD (mg/L)
COL color (mg/L)
COND conductivity (�S/cm at 25◦C)
FR inlet flow rate (m3/day)
NAM inlet ammonia concentration (mg/L)
NN inlet nitrate concentration (mg/L)
pH pH
PAP paper production (t/day)
PULP pulp production (t per day)
RF rainfall (mm per day)
T wastewater temperature (◦C)
TSS inlet total suspended solids (mg/L)

usually obtained by applying modeling techniques such as
linear multivariate regression. These techniques have been
successfully used to approximate complex relationships over
small intervals of the predictor variables[8]. The underly-
ing assumption is that the nonlinear behavior can be locally
approximated by a linear model.

The main objective of this research is to develop an esti-
mation model that provides accurate predictions of the BOD
of inlet and outlet streams of an aerated lagoon at a pulp and
paper mill operated by International Paper of Brazil (IPB).
Steady-state and dynamic predictive models have been de-
veloped based on both multiple linear regression (MLR) and
partial least squares (PLS) regression approaches. Here, the
advantage of both techniques to model a complex and mul-
tivariate process is verified. The development of nonlinear
models based on neural networks is the subject of a com-
parison paper[1].

This paper is organized in five sections. InSection 2the
process and the available process data are described. In
Section 3some concepts of the MLR and PLS approaches
are briefly reviewed. The results obtained are given in
Section 4. Finally, Section 5presents the conclusions.

2. An aerated lagoon case study

Wastewater from International Paper of Brazil is routed
for preliminary treatment followed by biological treatment.
Two parallel settling tanks, provided with mixing and floc-
culation chambers, constitute the primary treatment. Biolog-
ical treatment consists of one aerated and five nonaerated
lagoons. As a secondary treatment facility, the aerated la-
goon is used to remove organic load and suspended solids
contained in the wastewater from the milling process. After
treatment in a drying system, the solids removed are used
as fertilizer.

Ten process variables for the aerated lagoon and two of
the pulp and paper mill were chosen based on engineering

judgment regarding which variables might be important for
BOD prediction. Time series plots of the variables on a daily
basis and their basic statistical properties are shown inFig.
1 andTable 1, respectively. The symbols and their units are
defined in nomenclature.

The original data base covered a period of 1427 consec-
utive days, about a 4-year daily record. However, the ex-
tremely high incidence of missing values for many variables
is a relevant problem, specially for the TSS, NAM and NN
variables, where missing values are more frequent than not.

Throughout the 4-year period, a gradual decrease in flow
rate (FR) followed by an increase in COD can be observed.
By contrast, the BODin and BODout values exhibit a large
amount of variability that makes it difficult to detect any
general relationships between these variations and the COD
and flow rate patterns.

The color measurement is an indirect indication of the
amount of lignin compounds in the effluent. The greater the
amount of lignin compounds, the darker the effluent resulting
in a greater tendency to produce foam. The color values
of the inlet wastewater decreased abruptly after 2 January
2000 (seeFig. 1). This decrease might have been caused by
a special change in the pulp and paper manufacturing or in
the primary treatment. No related changes were observed
for the other wastewater quality variables.

The optimal pH value for biological wastewater treatment
lies between 6.5 and 8.0. However, it can be noted inTable 1
that, even though pH average and standard deviation were
7.45 and 1.21, the measured pH varied from 0.85 to 12.53.
The extremely low pH value of 0.85 occurred on 6 April
1997, and appears to be an outlier because none of the other
inlet or outlet variables have unusual values. Therefore, it
was concluded that this value might have been recorded in-
correctly (e.g. a typing error). On the other hand, the micro-
bial consumption seems to be affected by high pH values.
For example, pH values of 12.53 and 11.56 on 17–18 Febru-
ary 1998, respectively, were followed by high values of out-
let BOD, 167 and 187 mg/L, on 17–18 February 1998, re-
spectively. Alkalinity variations may be caused by the pres-
ence of various inorganic and organic chemicals, like dyes,
heavy metals, detergents, starches, etc., that are normally
present in pulp and paper effluents. The data for the day the
pH value was recorded to be 0.85 was not used to construct
the BOD predictive models.

The seasonal effects of the wastewater temperature can
be verified inFig. 1. It is expected that higher temperatures
are associated with higher microbial growth rates, as will be
seen later. Conductivity measures water’s ability to conduct
an electric current and is directly related to the total amount
of dissolved salts (ions) in the wastewater. Although con-
ductivity data are temperature sensitive, the data available
for this research were automatically corrected and standard-
ized to 25◦C.

Two data sets were then constructed for inlet and out-
let BOD prediction; the 2-day hydraulic residence time was
used to select appropriate input/output structures for the dy-
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Fig. 1. Data of an aerated lagoon of a pulp and paper mill over a 4-year period (September 1996–July 2000).

namic models for outlet BOD. Data Set 1 contains only the
most frequently measured variables, i.e. FR, COD, COND,
COL, pH, T, PULP and PAP, whereas Data Set 2 contains
all 12 variables inTable 1. Rainfall was not included in
Data Set 1 owing to its high incidence of zero values. Be-
cause both data sets include only those days with actual
values for the predicted and predictor variables, the 4-year
daily records are reduced to 782 and 79 samples, respec-
tively, for Data Sets 1 and 2, with each day considered as a
new sample. It should be noted that, after exclusion of some
samples, the percentage of missing samples of wastewater
temperature decreased to 10%. Therefore, temperature val-
ues were also included in Data Set 1. Recent and past Data

Set 1 values were used for dynamic modeling. For simplic-
ity, linear interpolation was used to estimate the missing
values instead of alternative, more complicated techniques
[9].

Using a random selection method, about 80% of all data
records of each data set were used to construct the multi-
variate model, while the remaining 20% were used for val-
idation.

In order to maximize the amount of data used to test model
performance on Data Set 1, the data initially excluded for
having missing values were pretreated using linear interpola-
tion. Then, two new validation data sets, each with 156 sam-
ples, were obtained and are called here as test sets. It must
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Table 1
Basic statistics for the predicted and predictor variables

Parameter Average S.D. Minimum Maximum Skewness Kurtosis Missing data (%)

BODin 245 46.2 41 449 0.08 1.56 6.2
BODout 85.1 25.4 16 187 0.15 0.43 6.0
COD 561 104 136 925 −0.16 1.05 6.2
COL 467 123 41 1317 0.50 3.41 3.6
COND 1529 377 379 5810 2.68 18 3.9
FR 67392 11582 4474 47850 −1.54 4.93 0
NAM 2.45 1.76 0 20 2.42 16.4 54
NN 1.44 0.88 0.03 7.38 2.42 11.0 80
PAP 1043 94.1 382.4 1304 −1.57 5.78 6.4
pH 7.45 1.21 0.85 12.53 1.79 4.17 3.7
PULP 886 155 0 1112 −3.31 14.2 7.8
RF 4.83 11.5 0 175 5.26 5 17
T 45.4 3.07 28 50.5 −2.31 8.57 33
TSS 149 85.9 12 591 1.58 4.09 60

be emphasized, however, that no more than two consecutive
missing values were estimated using linear interpolation.

3. Modeling using multiple linear regression techniques

The standard multiple linear regression technique has
been extended in a number of ways to address more so-
phisticated data analysis problems. When the regressors are
few in number, are not significantly redundant (collinear)
and have a well-understood relationship to the responses,
then MLR can be a good way to transform data into in-
formation. However, if any of these three conditions does
not hold, MLR can be inefficient or inappropriate. In these
so-called soft modeling applications, the researcher is faced
with many variables and poorly understood relationships,
and the objective is merely to construct a good predictive
model. Stepwise variable selection procedures can be valu-
able tools in data analysis, particularly in the early stages
of building a model. However, this procedure can examine
many variables and select those, which, by pure chance,
have a good fit. Thus, important information may be lost
with the excluded variables. Furthermore, when the step-
wise procedure is automatic, it cannot take into account
special knowledge the analyst may have about the data.
Therefore, the model determined might not be the best from
a practical point of view.

Partial least squares regression has been widely used for
process monitoring and is probably the least restrictive of
the various multivariate extensions of multiple linear regres-
sion. Its flexibility allows applications in situations where
the use of traditional multivariate methods is severely lim-
ited, such as when there are fewer observations than pre-
dictor variables. Furthermore the predictor latent variables
(LVs) are orthogonal to each other and modeling problems
occurring in conventional MLR are avoided. Also, the PLS
method is optimized to maximize the proportion of variance
of the LVs, that is, explained by the predictor. Therefore,
there is less risk that useful predictive information might be
discarded or minimized than in stepwise regression.

4. Methodology

For this research, all data sets were normalized from 0.2
to 0.8 prior to analysis. Stepwise regression was used to add
variables and/or remove them from the MLR model for the
purposes of identifying a useful subset of predictors. Corre-
lated variables were added and removed from the model at
the α = 0.10 (90% confidence) andα = 0.15 (85% confi-
dence) levels[10–12].

Outliers were identified graphically by plotting principal
components analysis (PCA) and PLS scores[13,14]; newer
robust multivariate methods of outlier identification are pro-
posed by Hoo et al.[15]. The obtained results were analyzed
together with the IPB process specialists who suggested that
only the pH outlier data collected on 6 April 1997 should
not be used to construct the models.

Unfortunately, there is no universal, automatic criterion
for selection of the number of LVs for PLS models, and
discrepancies between different criteria are common[16]. In
this research, the appropriate number of LVs was selected by
the increase in predicted accumulated variance (AV), which
has to be at least 2% for adding a new LV[17].

The mean square error and coefficient of multiple deter-
mination (R2) were calculated for calibration and validation
results.P-values forR2 were calculated in order to verify
the significance of the multivariate regression. This test as-
sumed a 95% confidence level.

Minitab, Matlab and Statistica computer programs were
used for statistical analysis, data pretreatment, and MLR and
PLS modeling.

5. Results

5.1. Modeling Data Set 1

For inlet BOD prediction using Data Set 1 as the calibra-
tion data, three LVs are optimal for both the steady-state and
the dynamic models. The steady-state model explains 55.8
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Table 2
R2and MSE for inlet BOD and validation Data Set 1

Model Actual data Interpolated data R̄2 ± s MSE± sa

R2 MSEa R2 MSEa R2 MSEa

Steady-state models from Data Set 2 MLR-8 47.6 11.8 47.0 14.9 54.1 14.0 50.6± 3.9 13.5± 1.6
MLR-5 45.8 12.1 46.9 14.9 54.7 13.9 49.2± 4.9 13.6± 1.4
PLS-3 48.0 11.6 46.6 15.0 52.8 14.3 49.2± 3.3 13.6± 1.8

Dynamic models from Data Set 2 MLR-16 47.1 11.9 47.4 14.8 55.0 13.8 49.8± 4.5 13.5± 1.5
MLR-6 47.0 11.9 47.0 14.9 53.4 14.3 46.2± 3.7 13.7± 1.6
PLS-3 45.8 12.2 46.2 15.1 54.2 14.0 48.8± 4.7 13.8± 1.5

a These results have to be multiplied by 10−4 to obtain MSE values for normalized data.

and 42.0% of the predictor and predicted accumulated vari-
ance, while the dynamic model has predictor and predicted
AV values of 44.0 and 46.7%. For outlet BOD prediction for
Data Set 1, the optimal number of LVs is also three for both
steady-state and dynamic models. The steady-state model
explains 53.0 and 31.5% while the dynamic model explains
41.1 and 37.5% of the predictor and predicted AVs, respec-
tively. Less than 1.6 and 1.3% increases in AVs would be
obtained by adding one more LV to the inlet and outlet BOD
models, respectively.

As expected, because COD is the variable best correlated
with inlet and outlet BOD for both steady-state and dynamic
models, the first LV of each PLS model is almost exclusively
related to COD and this variable is the first one included in
MLR by the stepwise method.

A variety of MLR models were considered containing as
many as eight regressors. In preliminary screening tests, the
most influential regressors were selected from the process
variables inTable 1using standard statistical techniques such
as stepwise regression. As many as three lags were consid-
ered for the dynamic models. Only the best models are re-
ported in this paper.

The multivariate regression models were then constructed
and their prediction performances are shown inTables 2 and
3 for inlet and outlet BOD, respectively. Thep-value for the
coefficient of multiple determination (R2) is essentially zero
for all models, indicating the statistical significance of the
regressions.s denotes the sample standard deviation of the
test and validation data sets.

Analysis of model performance was hampered by the
large standard deviations forR2 and MSE. No substantial

Table 3
R2and MSE for outlet BOD and validation Data Set 1

Model Actual data Interpolated data R̄2 ± s MSE± sa

R2 MSEa R2 MSEa R2 MSEa

Steady-state models from Data Set 2 MLR-8 37.8 20.4 28.4 26.2 38.7 25.8 34.9± 5.7 24.1± 3.2
MLR-4 39.0 20.0 28.5 26.2 38.9 25.5 35.5± 6.0 23.9± 3.4
PLS-3 36.6 20.8 26.8 26.8 37.7 26.4 33.7± 6.0 24.6± 3.4

Dynamic models from Data Set 2 MLR-16 39.6 20.0 30.8 26.7 46.4 22.8 39.0± 7.8 23.2± 3.4
MLR-6 40.6 19.8 31.4 26.5 46.7 22.3 39.6± 7.7 22.9± 3.4
PLS-3 39.9 19.8 28.4 28.1 44.4 23.7 37.6± 8.3 23.9± 4.2

a These results have to be multiplied by 10−4 to obtain MSE values for normalized data.

difference between steady-state and dynamic modeling per-
formances in inlet BOD prediction is clearly observable.
Therefore, the simplest model, i.e. the steady-state MLR
model with five predictors, is chosen as the best one and
shown in the following equation:

BODin(t) = 0.02+ 0.61COD(t) + 0.23FR(t) − 0.15T(t)

+ 0.12pH(t) + 0.10PULP(t) (1)

For outlet BOD, better performance is obtained using dy-
namic modeling. The MLR model with six predictors gives
slightly better predictions for outlet BOD and is the sim-
plest dynamic model obtained. It is shown in the following
equation:

BODout(t + 2) = −0.365+ 0.42COD(t) + 0.35COD(t − 1)

+ 0.45FR(t) + 0.25FR(t + 1)

− 0.232T(t + 1) + 0.381COND(t) (2)

As expected, the COD terms have the largest positive coef-
ficients in both inlet and outlet BOD models, followed by
flow rate. Although the COD and FR data are autocorre-
lated both current and past values, are important for outlet
BOD predictions, that is, these terms havep-values lower
than 0.05 for the statistical tests of the regressors.

Not surprisingly, because microbial activity slows when
the temperature declines, the regression models indicate neg-
ative relations between the predictors and both inlet and out-
let BOD. As mentioned before, the microbial population is
also pH sensitive, that is, microbial activity decreases when
pH is not near the neutral range. Nevertheless, although pH
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Fig. 2. Relation between predicted vs. measured BOD (solid line). Upper and lower dashed lines indicate the 95% prediction estimation interval according
to (a) MLR model 8 and inlet BOD and (b) MLR model 5 and outlet BOD.

information seems to be necessary for inlet BOD predic-
tions this is not so for outlet BOD. PULP and COND are
the other variables included in the inlet and outlet BOD pre-
dictive models, respectively.

The negative constant in the BOD equation would corre-
spond to a negative biological oxygen demand when all the
variables inEq. (2)were equal to zero. This solution is not
physically reasonable. All data falls within the normalized
range of about 0.2–0.8 for BOD. This indicates that a lin-
ear model will not be valid when BOD approaches the zero

Fig. 3. Time series plot of (a) measured and predicted inlet BOD for MLR model 5 and (b) residuals—upper and lower dashed lines indicate the 95%
confidence interval.

limit. In other words it is not possible to extrapolate this
model for these small BOD values.

It should be noted that, despite the fact that PLS mod-
els contain only three LVs as predictors, estimation of their
scores requires the measurement of all eight original vari-
ables, which could result in higher implementation costs
when compared with the use of models for which variables
have been removed. Here, it is difficult to identify the most
important variables of the model because their loadings vary
considerably from one LV to another (data not shown). Only
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Fig. 4. Time series plot of (a) measured and predicted outlet BOD for dynamic MLR model 6 and (b) residuals—upper and lower dashed lines indicate
the 95% confidence interval.

the variable color does not seem to be important to the PLS
model. For problems with larger dimensionality, the use of
specific approaches for identification of variable importance
[14] is essential.

The plots of the predicted and measured BOD inFig. 2
show that the best predictive models for both inlet and outlet
BOD provide predictive capability and, as expected, predict
most outputs within 95% prediction bands. Of course, lin-
ear models are local approximations and appear to be valid
here only for measured inlet and outlet BOD above about
0.35. Below this value, the predictions inFig. 2exhibit large
negative deviations below the 95% confidence band indicat-
ing that an alternative model passing through the origin is
more appropriate for small inlet and outlet BOD values. In
Figs. 2–4, the BOD residuals have been normalized, as dis-
cussed earlier.

Figs. 3 and 4display the time series for the measured
and predicted data for inlet and outlet BOD, respectively,
using the best models obtained. Both inlet and outlet BOD
are well reproduced even when interpolated data are used to
develop the MLR models. Not surprisingly, inlet BOD val-
idation data are slightly better reproduced than outlet BOD
data. This result is accounted reasonable due to the complex-
ity of the wastewater treatment system and the relationship
between outlet BOD and the aerated lagoon inlet variables.

The results indicate that more than 85% of the residuals are
<0.1 for both output variables.

5.2. Modeling Data Set 2

The optimal number of LVs for both inlet and outlet BOD
is four, which corresponds to 53.1 and 54.1% of the pre-
dictor AV and 66.15 and 62.77% of the predicted AV for
the inlet and outlet BOD models, respectively. Only 0.18
and 0.67% increases in AV would be obtained for the inclu-
sion of one more LV in the inlet and outlet BOD models,
respectively.

As was the case for Data Set 1, the COD variable is most
important for the first LV and is the first one included in MLR
models by the stepwise regression method. The MLR and
PLS modeling results for inlet and outlet BOD are shown in
Table 4.

The R2 and MSE results inTable 4appear to be some-
what contradictory. While MSE values indicate that the PLS
models give the best prediction results for both inlet and out-
let BOD, theR2 values indicate that the stepwise and MLR
models are the best ones for inlet and outlet BOD, respec-
tively. R2 cannot be used as a criterion for model quality
here because more model parameters are used in the MLR
models than in the PLS ones.
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Table 4
R2 and MSE for inlet and outlet BOD models and validation Data Set 2

Inlet BOD Outlet BOD

Model R2 MSEa Model R2 MSEa

Steady-state models from Data Set 2 MLR-12 57.4 13.8 MLR-12 67.6 11.8
MLR-2 71.8 8.6 MLR-6 61.8 13.5
PLS-4 64.8 8.0 PLS-4 65.4 10.9

Steady-state models from Data Set 1 MLR-8 70.3 10.8 MLR-8 73.9 5.7
MLR-5 66.7 11.7 MLR-4 67.4 7.4
PLS-3 69.1 10.5 PLS-3 77.1 4.7

a These results have to be multiplied by 10−4 to obtain MSE values for normalized data.

Comparing model performances for Data Sets 1 and 2,
indicates that steady-state models for Data Set 1 give signif-
icantly better results for both inlet and outlet BOD, except
for the stepwise models of inlet BOD prediction.

6. Summary and conclusions

Determination of an appropriate model structure for bi-
ological treatment systems of industrial wastewater is a
formidable task. In this paper, steady-state and dynamic
linear regression approaches have been evaluated for the
purpose of developing models for prediction of inlet and
outlet BOD of an aerated lagoon. It is not always clear
whether the poor fit to the data owes to the structure of the
model or to the estimation of model parameters. For this
application, different models structures gave about the same
performance.

To summarize, it was found that steady-state models give
better prediction results for inlet BOD than for outlet BOD.
Because the relationship between the outlet BOD and the in-
let variables is influenced by the biological complexity and
physical structure of the aerated lagoon, information on the
aerated lagoon dynamics was found to be indeed important
and necessary for the predictive models for outlet BOD. No
significant differences were observed between MLR, step-
wise and PLS model performances. Nevertheless, stepwise
models were chosen as the best ones for inlet and outlet
BOD prediction because of their simplicity.

Finally, there is no doubt that multiple linear regression
techniques provide physically interpretable models and can
be satisfactorily used to monitor inlet and outlet BOD be-
havior in relation to other aerated lagoon variables, as long
as enough calibration data are available. It should be empha-
sized that specific chemical compounds in the wastewater,
which may act in either a stimulatory or an inhibitory man-
ner, can influence the microbial activity in the aerated la-
goon, and the quality wastewater parameters can be strongly
influenced by environmental conditions. Consequently, ex-
trapolations beyond the range of the data analyzed here
must be done with considerable caution because the result-
ing predictions are likely to be inaccurate. However, the

empirical modeling techniques employed in this research
are also applicable to other types of complicated industrial
processes.
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